0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Линейные источники света

Линейные и точечные источники света

По размеру все источники света можно условно разбить на две группы:

Точечным называют такой источник света, размеры которого настолько малы по сравнению с расстоянием до приемника излучения, что ими можно пренебречь.

На практике за точечный источник света принимается такой, максимальный размер L которого по крайней мере в 10 раз меньше расстояния г до приемника излучения (рис.1).

Для таких источников излучения освещенность определяется по формуле Е = (I/r 2 ) · cos α ,

где Е,I — соответственно освещенность поверхности и сила света источника излучения; r — расстояние от источника света до фотоприемника; α — угол, на который фотоприемник переместился от нормали.

Рис. 1. Точечный источник света

Например, если лампа диаметром 10 см освещает поверхность на расстоянии 100 м, то эту лампу можно считать точечным источником. Но если расстояние от этой же лампы до поверхности будет 50 см, то лампу уже нельзя считать точечным источником. Типичный пример точечного источника света — звезда на небе. Размеры звезд огромны, но расстояние от них до Земли на много порядков больше.

Точечными источниками света в электрическом освещении считаются галогенные и светодиодные лампы для встраиваемых светильников. Светодиод является практически точечным источником света, так как его кристалл микроскопических размеров.

К линейным источникам излучения относят те излучатели, у которых относительные размеры по любому из направлений больше размеров точечного излучателя. По мере удаления от плоскости измерения освещенности относительные размеры такого излучателя могут достигнуть такого значения, при котором данный источник излучения превращается в точечный.

Примеры электрических линейных источников света: люминесцентные лампы, линейные светодиодные лампы, с ветодиодные RGB -ленты. Но, согласно определения, к линейным (протяженным) источникам света можно отнести все источники, которые не считаются точечными.

Если из точки, в которой расположен точечный источник излучения, отложить в различных направлениях в пространстве векторы силы света и через их концы провести поверхность, то получится фотометрическое тело источника излучения. Такое тело полностью характеризует распределение потока излучения в пространстве.

По характеру распределения силы света в пространстве точечные источники делятся также на две группы. Первую группу составляют источники с симметричным относительно некоей оси распределением силы света (рис. 2). Такой источник называется круглосимметричным.

Рис. 2. Модель симметричного излучателя

Если источник круглосимметричный, то его фотометрическое тело является телом вращения и может быть полностью охарактеризовано вертикальным и горизонтальным сечениями, проходящими через ось вращения (рис. 3).

Рис. 3. Продольная кривая распределения силы света симметричного источника

Вторую группу составляют источники с несимметричным распределением силы света. У несимметричного источника тело распределения силы света не имеет оси симметрии. Чтобы характеризовать такой источник, строят семейство продольных кривых силы света, соответствующих различным направлениям в пространстве, например через 30°, как на рис. 4. Обычно такие графики строят в полярных координатах.

Рис. 4. Продольные кривые распределения силы света нессиметричного источника

Источники света

Источник света – это тело, которое излучает энергию в световом диапазоне.

Различные типы источников света

Классификация источников света проводится в зависимости от разных характеристик. Таким образом, в физике определяющим является разделение источников света на 2 вида:

  1. Точечные;
  2. Непрерывные (модели источников света).

Встречается подразделение на и на такие виды источников света как:

  1. Естественные (солнце, звёзды, атмосферные электрические разряды и т.п.);
  2. Искусственные (пламя, разнообразные лампы, светодиоды, лазерные приспособления).

Искусственные источники света подразделяют в зависимости от вида энергии, переходящей в излучение, на:

  1. Тепловые источники (свет в них возникает в результате нагревания до высоких температур);
  2. Люминесцентные источники (световое излучение в них появляется благодаря превращению разных видов энергии, но не тепловой).
Читать еще:  Лучшие датчики движения для включения света

Также искусственные источники света выделяются по конструктивным особенностям.

Основные характеристики источников света

Сила света

Точечный источник света – это такой световой источник, размеры которого можно не принимать во внимание, по сравнению с расстоянием от источника до места наблюдения. В оптически однородной и изотропной среде волны, излучаемые точечным источником, являются сферическими.

Для характеристики точечного источника используют понятие силы света ( I ) , которая определяется как:

где d Ф – это световой поток, излучаемый источником в пределах телесного угла d Ω . При рассмотрении сферической системы координат можно сказать, что в общем-то сила света зависит от полярного ( ν ) и азимутального φ углов I = I ν , φ .

Источник света называется изотропным, если на его силу света не оказывает влияние направление. Для изотропного источника света запишем:

где Ф – это суммарный световой поток, излучаемый источником во всех направлениях. Величина силы источника, которая вычисляется как ( 2 ) , также называется средней сферической силой света источника.

Если источник света не является точечным (протяженный источник), тогда применяют понятие силы света элемента его поверхности ( d S ) . В данном случае в формуле ( 1 ) величина d Ф – это световой поток, излучаемый элементом поверхности источника ( d S ) в пределах телесного угла ( d Ω ) .

Основная единица измерения силы света в системе измерения – кандела ( к д ) (старое название – свеча ( с в ) ). 1 к д излучает световой эталон как абсолютно черное тело при температуре T = 2046 , 6 K (температура, при которой затвердевает чистая платина) и давлении 101325 П а .

Световой поток

Основной единицей измерения светового потока является люмен ( л м ) , который равняется световому потоку, испускаемому источником в 1 к д внутрь телесного угла 1 стерадиан.

Освещенность

Величина ( E ) , равная E = d Φ p a d d S ( 5 ) , называется освещенностью. В выражении ( 5 ) d Φ p a d – это величина светового потока, падающего на элемент поверхности d S . Освещенность измеряется с системе измерения в люксах ( л к ) 1 л к = 1 л м 1 м 2 ( 6 ) , при равномерном распределении потока по поверхности.

Светимость

Протяженный источник света характеризуют светимостью ( R ) его участков. Она описывает излучение (отражение) света выделенным элементом поверхности во всех направлениях.

Светимость проявляется из-за отражения поверхностью падающего на нее светового потока. Тогда под d Φ i s p понимают в выражении ( 8 ) поток, отражаемый элементарной поверхностью d S во всех направлениях.

Светимость измеряется в люксах.

Яркость

Яркость ( B ) используют для описания излучения (отражения) света в заданном направлении. Направление причем задается полярным углом ν , который откладывают от внешней нормали n → к излучающей площадке и азимутальным углом φ .

Ламбертовскими источниками света (или косинусные, подчиняющиеся закону Ламберта), называются источники, яркость которых не меняется в зависимости от направления. Для ламбертовских светильников d I элементарной площадки пропорциональна cos ν .

Единица яркости кандела на квадратный метр к д м 2 .

Необходимо найти световой поток, излучаемый элементарной поверхностью d S внутрь конуса, ось которого расположена перпендикулярно выделенному элементу. Угол конуса равен ν 0 . Будем считать, что светящаяся поверхность подчинена закону Ламберта и ее яркость равняется В .

Решение

Для решения задачи используем определение яркости и из него выделим элемент светового потока:

B = d Φ d Ω d S cos ν → d Φ = B d Ω d S cos ν ( 1 . 1 ) .

Элементарный телесный угол в сферических координатах равняется:

d Ω = sin ν d ν d φ ( 1 . 2 ) .

Подставим выражение для телесного угла в выражение ( 1 . 1 ) , получаем:

d Φ = B sin ν d ν d φ d S cos ν ( 1 . 3 ) .

Определим полный световой поток интегрированием выражения ( 1 . 3 ) :

Φ = B d S ∫ 0 v 0 sin ν cos ν d ν ∫ 0 2 π d φ = π B d S sin 2 ν 0 .

Ответ: Φ = π B d S sin 2 ν 0 .

Яркость однородного светящегося диска радиуса r меняется по закону B = B 0 cos ν , B 0 = c o n s t , ν – это угол с нормалью к поверхности. Необходимо найти световой поток ( Ф ) , испускаемый диском.

Читать еще:  Лучшие диодные лампы для дома

Решение

Выразим элемент светового потока с помощью уравнения из условий задачи для ярости как:

d Φ = B d Ω d S cos ν = B 0 cos ν 2 d Ω d S ( 2 . 1 ) ,

где элементарный телесный угол в сферических координатах равняется:

d Ω = sin ν d ν d φ ( 2 . 2 ) .

Световой поток вычислим как интеграл от выражения ( 2 . 1 ) при использовании ( 2 . 2 ) :

Φ = B 0 d S ∫ 0 π 2 sin ν cos 2 ν d ν ∫ 0 π 2 d φ = 2 π B 0 d S ∫ 0 π 2 d ( — cos ν ) cos 2 ν = 2 3 πB 0 dS = = 2 3 B 0 π 2 r 2 .

Ответ: Φ = 2 3 B 0 π 2 r 2 .

Источники света: что нам светит

Источники света — один из самых массовых товаров. Ежегодно производят и потребляют миллиарды ламп, значительную долю которых пока составляют лампы накаливания и галогенные лампы.

Стремительно растёт потребление современных ламп — компактных люминесцентных и светодиодных. Происходящие изменения в качестве дают надежду на то, что источники света станут важным инструментом дизайнера, архитектора, проектировщика.

Об освещённости и цветовой температуре света

Ряд параметров ламп определяет насколько они применимы в том или ином проекте.

Световой поток определяет количество света, которое дает лампа (измеряется в люменах). Установленная в люстре лампа накаливания мощностью 100 Вт имеет световой поток 1200 лм, 35-ватная «галогенка» — 600 лм, а натриевая лампа мощностью 100 Вт — 10 000 лм.

У разных типов ламп разная световая отдача, определяющая эффективность преобразования электрической энергии в свет и, следовательно, разную экономическую эффективность применения. Световую отдачу лампы измеряют в лм/Вт (светотехники говорят «люменов с ватта», имея в виду, что каждый ватт потребляемой электроэнергии «преобразуется» в некоторое количество люменов светового потока).

Переходя от количества к качеству, рассмотрим цветовую температуруцв, единица измерения — градус Кельвина) и индекс цветопередачи (Ra). При выборе ламп дизайнер обязательно учитывает цветовую температуру для той или иной установки. Комфортная среда сильно зависит от того, какой свет в помещении «тёплый» или «холодный» (чем выше цветовая температура, тем «холоднее» свет).

Цветопередача — важный параметр, о котором часто забывают. Чем более сплошной и равномерный спектр у лампы, тем различимее цвета предметов в её свете. У Солнца сплошной спектр излучения и наилучшая цветопередача, при этом Тцв меняется от 6000К в полдень до 1800К в рассветные и закатные часы. Но далеко не все лампы могут сравниться с Солнцем.

Если у искусственных источников теплового излучения сплошной спектр и нет проблем с цветопередачей, то разрядные лампы, имеющие в своем спектре полосы и линии, сильно искажают цвета предметов.

Индекс цветопередачи тепловых источников равен 100, для разрядных он колеблется от 20 до 98. Правда, индекс цветопередачи не даёт сделать вывод о характере передачи цветов, а иногда способен запутать дизайнера. Так, у люминесцентных ламп и у белых светодиодов хорошая цветопередача (Ra=80), но при этом они неудовлетворительно передают некоторые цвета.

Другой крайний случай, когда индекс цветопередачи более 90 — в этом случае некоторые цвета воспроизводятся неестественно насыщенными.

Лампы выходят из строя. Кроме того, световой поток лампы уменьшается в процессе работы. Срок службы — основной эксплуатационный параметр источников света.

Проектируя осветительную установку нельзя забывать об обслуживании, т. к. частая замена ламп увеличивает стоимость эксплуатации и вносит дискомфорт.

Лампы накаливания

Вольфрамовая спираль в колбе разогревается под действием электрического тока. Для сокращения скорости распыления вольфрама и соответственно увеличения срока службы лампы колба наполняется инертным газом. По принципу действия лампа накаливания относится к тепловым источникам света, т. е. значительная доля потребляемой энергии расходуется на тепловое и инфракрасное излучение.

Типичная для ламп накаливания световая отдача 10–15 лм/Вт, а срок службы редко превышает 2000 часов. Достоинства этих ламп: низкая цена и качество света (Тцв=2700, Ra=100). Сплошной спектр качественно воспроизводит цвета окружающих предметов. Лампы накаливания постепенно вытесняются разрядными источниками света и светодиодными лампами.

Читать еще:  Лучший электроинструмент для дома

Галогенные лампы накаливания

Добавление галогенов в колбу лампы накаливания и использование кварцевого стекла позволили сделать серьезный шаг вперёд, получив новый класс источников света — галогенные лампы накаливания. Световая отдача современных ГЛН составляет 30 лм/Вт. Типичное значение цветовой температуры 3000К и индекс цветопередачи 100. «Точечная» форма источника света с помощью отражателей даёт управлять пучком света.

Получающийся при этом искристый свет определил приоритет таких ламп в интерьерном дизайне, где они заняли лидерство. Ещё одно преимущество в том, что количество и качество света лампы постоянно на протяжении срока службы. Популярны низковольтные «галогенки» мощностью 10–75 Вт с отражателем, который фокусирует луч в угле 10–40°.

Недостатки ГЛН очевидны: малая световая отдача, короткий срок службы (в среднем 2000–4000 часов), необходимость использования (для низковольтных) понижающих трансформаторов. Там, где эстетический компонент важнее экономического, с ними приходится мириться.

Люминесцентные лампы

Люминесцентные лампы (ЛЛ) — разрядные лампы низкого давления — представляют собой цилиндрическую трубку с электродами, которая наполнена инертным газом и малым количеством ртути. При включении в трубке возникает дуговой разряд, и атомы ртути начинают излучать видимый свет и ультрафиолет. Нанесённый на стенки трубки люминофор под действием ультрафиолетовых лучей излучает видимый свет.

Основа светового потока лампы — излучение люминофора, видимые линии ртути составляют лишь малую часть. Многообразие люминофоров (смесей люминофоров) позволяет получить источники света с различным спектральным составом, который определяет цветовую температуру и индекс цветопередачи.

Люминесцентные лампы дают мягкий, равномерный свет, но его распределением в пространстве трудно управлять из-за большой поверхности излучения. Для работы люминесцентных ламп необходима специальная пускорегулирующая аппаратура. Лампы долговечны — срок службы до 20 000 часов.

Световая отдача и срок службы сделали их самыми распространёнными источниками света в офисном освещении.

Компактные люминесцентные лампы

Развитие люминесцентных ламп привели к созданию компактных люминесцентных ламп (КЛЛ). Это источник света похожий на миниатюрную люминесцентную, иногда с встроенным электронным пускорегулирующим аппаратом и резьбовым цоколем Е27 (для непосредственной замены ламп накаливания), Е14 и др.

Различие заключается в уменьшенном диаметре трубки и использовании другого типа люминофора. Компактная люминесцентная лампа может с успехом заменить лампы накаливания.

Разрядные лампы высокого давления

Последние разработки позволяют использовать для освещения разрядные лампы высокого давления. По ряду показателей подходят металлогалогенные (МГЛ). У этих ламп во внешней колбе размещается горелка с излучающие добавки. В горелке присутствует некоторое количество ртути, галоген (чаще йод) и атомы химических элементов (Tl, In, Th, Na, Li и др.).

Сочетание излучающих добавок достигает интересных параметров: высокая световая отдача (до 100 лм/Вт), отличная цветопередача Rа=80–98, диапазон Тцв от 3000 К до 6000 К, средний срок службы до 15 000 часов. Для работы этих ламп требуется пускорегулирующие аппараты и специальные светильники. Рекомендуется использовать эти источники для освещения помещений с большой площадью, с высокими потолками, просторных залов.

Светодиодные лампы

Светодиоды — полупроводниковые светоизлучающие приборы, называют источниками света будущего. Если говорить о современном состоянии «твердотельной светотехники», можно утверждать, что она вышла из периода младенчества. Достигнутые характеристики светодиодов (световая отдача до 140 лм/Вт, Rа=80–95, срок службы 70 000 часов) уже обеспечили лидерство во многих областях.

Диапазон мощностей светодиодных источников, реализация в лампах разных типов цоколей, управление лампами позволили в короткий срок удовлетворить растущие требования к источникам света. Главными преимуществами светодиодов остаются компактные размеры и управления цветовыми параметрами (цветодинамика).

Ссылка на основную публикацию
Adblock
detector